A beetle-inspired solution for underwater adhesion.
نویسندگان
چکیده
Glue-free reversible adhesion was achieved underwater using a beetle-inspired mushroom-shaped fibrillar microstructure. Structured surfaces reveal a 25% increase in pull-off force when immersed in water and their underwater attachment is 20 times more effective than that of flat surfaces. The van der Waals interaction that underlies the adhesion of the mushroom-shaped fibrillar microstructure is significantly enhanced by a suction effect when underwater. This results in a higher adhesive capability of the material, with potential in medicine, bio- and marine technologies and a range of applications in liquid-dominated environments.
منابع مشابه
Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces.
For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces ...
متن کاملHigh-performance mussel-inspired adhesives of reduced complexity.
Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced ...
متن کاملStrong underwater adhesives made by self-assembling multi-protein nanofibres.
Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesi...
متن کاملAn Underwater pH-Responsive Superoleophobic Surface with Reversibly Switchable Oil-Adhesion
a. Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, BeiHang University, Beijing 100191, China. b. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. c. College of ...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2008